With the evergrowing sizes of pre-trained models (PTMs), it has been an emerging practice to only provide the inference APIs for users, namely model-as-a-service (MaaS) setting. To adapt PTMs with model parameters frozen, most current approaches focus on the input side, seeking for powerful prompts to stimulate models for correct answers. However, we argue that input-side adaptation could be arduous due to the lack of gradient signals and they usually require thousands of API queries, resulting in high computation and time costs. In light of this, we present Decoder Tuning (DecT), which in contrast optimizes task-specific decoder networks on the output side. Specifically, DecT first extracts prompt-stimulated output scores for initial predictions. On top of that, we train an additional decoder network on the output representations to incorporate posterior data knowledge. By gradient-based optimization, DecT can be trained within several seconds and requires only one PTM query per sample. Empirically, we conduct extensive natural language understanding experiments and show that DecT significantly outperforms state-of-the-art algorithms with a $10^3\times$ speed-up.
translated by 谷歌翻译
Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (``areas'') to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere's center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot learning tasks across NLP and CV and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.
translated by 谷歌翻译
任务概括是自然语言处理(NLP)的漫长挑战。最近的研究试图通过将NLP任务映射到人类可读的提示形式中来提高预训练语言模型的任务概括能力。但是,这些方法需要费力且不灵活的提示,并且在同一下游任务上的不同提示可能会获得不稳定的性能。我们提出了统一的架构提示,这是一种灵活且可扩展的提示方法,该方法会根据任务输入架构自动自动自定义每个任务的可学习提示。它在任务之间建模共享知识,同时保持不同任务架构的特征,从而增强任务概括能力。架构提示采用每个任务的明确数据结构,以制定提示,因此涉及几乎没有人类的努力。为了测试模式提示的任务概括能力,我们对各种一般NLP任务进行基于模式提示的多任务预训练。该框架在从8种任务类型(例如QA,NLI等)的16个看不见的下游任务上实现了强劲的零射击和很少的概括性能。此外,全面的分析证明了每个组件在架构提示中的有效性,其在任务组成性方面的灵活性以及在全DATA微调设置下提高性能的能力。
translated by 谷歌翻译
知识蒸馏(KD)将知识从高容量的教师网络转移到加强较小的学生。现有方法着重于发掘知识的提示,并将整个知识转移给学生。但是,由于知识在不同的学习阶段显示出对学生的价值观,因此出现了知识冗余。在本文中,我们提出了知识冷凝蒸馏(KCD)。具体而言,每个样本上的知识价值是动态估计的,基于期望最大化(EM)框架的迭代性凝结,从老师那里划定了一个紧凑的知识,以指导学生学习。我们的方法很容易建立在现成的KD方法之上,没有额外的培训参数和可忽略不计的计算开销。因此,它为KD提出了一种新的观点,在该观点中,积极地识别教师知识的学生可以学会更有效,有效地学习。对标准基准测试的实验表明,提出的KCD可以很好地提高学生模型的性能,甚至更高的蒸馏效率。代码可在https://github.com/dzy3/kcd上找到。
translated by 谷歌翻译
通过微调调整大型预训练模型(PTM)会施加过刺激的计算和存储负担。对参数有效调整(PET)的最新研究发现,与常规微调相比,仅优化以PTM为条件的一小部分参数才能产生PAR性能。通常,PET方法精确设计参数有效的模块(PET模块)可以应用于PTMS内部的任意细粒位置。但是,这些细粒度位置的有效性很大程度上依赖于复杂的手动指定,因此通常会产生次优的结果。与手动指定相反,我们以自动方式探索构建宠物模块。我们将自动\ textbf {s} earch \ textbf {s} parse \ textbf {s} \ textbf {p} arameter- \ textbf {e} fficbf {e} fficient \ textbf {t textbf {t} uning(s $^3 $ pet) 。基于各种PET方法的统一框架,S $^3 $ PET通过双层优化进行了可区分的PET结构搜索,并提出了移动的全局Sigmoid方法,以明确控制可训练的参数的数量。广泛的实验表明,S $^3 $ PET超过了具有较低训练参数的手册和随机结构。搜索结构可保留99 \%的微调性能,具有0.01 \%可训练的参数。此外,S $^3 $ PET的优势通过极低的训练参数预算(0.0009 \%$ \ sim $ 0.01 \%)进行扩增。搜索结构是可转移和解释的,为PET方法的未来设计提供了建议和指导。
translated by 谷歌翻译
本文使用多代理增强学习(MARL)框架来研究数据中心(DC)中的网络负载平衡问题,其中部署了多个负载平衡器(LBS)。该问题的挑战包括异质的处理架构和动态环境,以及分布式网络系统中每个LB代理的有限和部分可观察性,这可能会大大降低实际设置中的生产负载平衡算法的性能。已经提出了中央化训练 - 分类 - 切除(CTDE)RL方案来提高MARL性能,但它会产生 - 尤其是在分布式网络系统中,这些网络系统更喜欢分布式和插入式设计方案 - 额外的通信和管理代理商。我们将多代理负载平衡问题作为马尔可夫潜在游戏,并精心设计的工作负载分配公平作为潜在功能。提出了完全分布的MARL算法,以近似游戏的NASH平衡。实验评估既涉及事件驱动的模拟器和现实世界系统,在该系统中,所提出的MARL负载平衡算法在模拟中显示出接近最佳的性能,而在现实世界系统中的生产lbs效果优于较高的结果。
translated by 谷歌翻译
Question Answering (QA) is a longstanding challenge in natural language processing. Existing QA works mostly focus on specific question types, knowledge domains, or reasoning skills. The specialty in QA research hinders systems from modeling commonalities between tasks and generalization for wider applications. To address this issue, we present ProQA, a unified QA paradigm that solves various tasks through a single model. ProQA takes a unified structural prompt as the bridge and improves the QA-centric ability by structural prompt-based pre-training. Through a structurally designed prompt-based input schema, ProQA concurrently models the knowledge generalization for all QA tasks while keeping the knowledge customization for every specific QA task. Furthermore, ProQA is pre-trained with structural prompt-formatted large-scale synthesized corpus, which empowers the model with the commonly-required QA ability. Experimental results on 11 QA benchmarks demonstrate that ProQA consistently boosts performance on both full data fine-tuning, few-shot learning, and zero-shot testing scenarios. Furthermore, ProQA exhibits strong ability in both continual learning and transfer learning by taking the advantages of the structural prompt.
translated by 谷歌翻译
本文提出了网络负载平衡问题,这是多项式增强学习(MARL)方法的一项挑战性的现实世界。传统的启发式解决方案,例如加权成本多路径(WCMP)和局部最短队列(LSQ),对不断变化的工作量分布和到达率的灵活性较小,并且在多个负载平衡器之间的平衡差。合作网络负载平衡任务被提出为DECPOMDP问题,该问题自然诱导了MARL方法。为了弥合现实差距用于应用基于学习的方法,所有方法均已直接训练和评估来自中度到大规模的仿真系统。对现实测试床的实验表明,独立和“自私”负载平衡策略不一定是全球最佳的,而拟议的MARL解决方案比不同的现实设置具有出色的性能。此外,分析了MAL方法在网络负载平衡中的潜在困难,这有助于吸引学习和网络社区的注意力。
translated by 谷歌翻译
稀有事件仿真技术,如重要采样(是),构成强大的工具,以加速罕见灾难性事件的具有挑战性的估算。这些技术经常利用底层系统结构的知识和分析,以赋予赋予理想的效率保证。然而,黑匣子问题,特别是来自最近AI驱动的物理系统的安全关键型应用的问题,可以从根本上破坏他们的效率担保,并在没有诊断地检测的情况下导致危险的估计。我们提出了一个框架,称为深度概率加速评估(Deep-Prae)来设计统计保障是通过转换多功能的黑匣子采样器,但可能缺乏保证,以便我们称之为放松的效率证明,允许准确估计界限。论罕见事件概率。我们介绍了深度PRAE理论,将主导点概念与稀有事件集合通过深度神经网络分类器进行了学习,并证明了其在数值例子中的有效性,包括智能驾驶算法的安全测试。
translated by 谷歌翻译
快速学习已成为现代自然语言处理的新范式,它直接适应培训的语言模型(PLMS)到$ CLOZE $ -Style预测,自回归建模或序列到序列生成,从而导致各种任务的表现。但是,尚未提出及时学习的标准实施框架,以及大多数现有的及时学习码条,通常是不受管制的,仅为特定方案提供有限的实现。由于有许多细节,例如模板策略,初始化策略和语言化策略等,因此需要在快速学习中考虑,从业者面临障碍,以便快速调整所需的迅速学习方法到他们的应用程序。在本文中,我们展示了{OpenPrompt},一个统一的易于使用的工具包,可以通过PLMS快速学习。 OpenPrompt是一项研究型框架,配备了效率,模块化和可扩展性,其组合性允许自由地将不同的PLMS,任务格式和提示模块组合在统一的范例中。用户可以宽松地部署快速学习框架,并在没有约束的情况下在不同的NLP任务上评估它们的泛化。 OpenPrompt在{\ url {https://github.com/thunlp/openprompt}}上公开发布。
translated by 谷歌翻译